Joining Sub-Platform

Industrial trends and demands for Arc Welding in AM Technologies

Univ.-Prof. Dr.-Ing. habil. Jean Pierre Bergmann Technical University of Ilmenau, Germany

November 16th 2017

Agenda

- 1. Introduction
- 2. Motivation for AM
- 3. Study on industrial trends for Arc AM
- 4. Summary

Technische Universität Ilmenau - Germany

facts and figures

- founded in 1894
- about 7000 students
- 5 faculties (<100 professors)

Production technology group

Team is consisting of 23 research assistants, 7 technical employes and 1 full professor

Research topics are

welding of light weight materials, laser material processing solid state welding, cladding and chipping (milling and turning) additive manufacturing (plastics as well as metals)

Motivation for Additive Manufacturing

Limits of conventional Production Technologies

Complexity

[Autodesk]

Light weight construction

[Welt der Fertigung]

Undercuts

[RT Journal]

Individualization

[EOS]

Additive Manufacturing as an enabling Technology

Study on potentials and development

Technische Universität Ilmenau was appointed from German welding society (DVS e.V.) to perform a study and to depict potentials and research topics for arc based additiv manufacturing

Start in September 2017 End in December 2017

Study is divided in

- a part regarding depicting of the development and state of the art (printed media, internet etc.)
- a part performing interviews with experts in Germany (20-25)

Wire Arc Additive
Manufacturing
(WAAM)

'U Ilmena

- GMAW and TIG processes
- feeding of wire
- low priced technical setup
- Deposition rates up to 5 kg/h and over
- little material loss compared to powder based technologies

Plasma Deposition
Manufacturing
(PDM)

[Norsk Titanium]

- Plasma and μ-Plasma processes
- feeding of powder or wire
- Deposition rates up to 10 kg/h
- Powder availability and over spray

Number of Publications for Arc AM (Database Elsevier / ScienceDirect)

Content of Publications for Arc AM

Examples of ongoing Projects for Arc AM within the EU

University / Coordinator	Project / Runtime	Content
ESA (European Space Agency) and 26 Academic and Industrial Partners	Project AMAZE 2013 - 2017	AM aiming towards Zero Waste & Efficient Production - New approaches to design, materials, automation, finishing
Cranfield University, UK	Various Projects since 20xx	RUAM (2007-2011) CAM Software Development (2014-2017) Active Cooling for WAAM (2014-2017) Cost Analysis Tool for WAAM (2015-2018) Mixed Material Pipe Structures (2016-2019)
TU Ilmenau, Germany	Various Projects since 2011	Direct industrial support Temperature adjustable large Tools (2016 – 2019) Composite Material Fabrication (2016 – 2018) 3D printed Knots for Bionic Structures (2017 – 2019)
University Delft / MX3D, Netherlands	Various projects since 2015	3D printing of various structures and materials with WAAM (bridges, sculptures etc.)
etc.		

Commercially available systems for Arc AM

[Mutoh Industries]

Mutoh Value Arc MA5000-S1 (2015) working space - 0,125 m³ Additional subtractive Manufacturing

[GEFERTEC]

GEFERTEC GTarc 800-5 (2017) working space - 0,8 m³ Additional subtractive Manufacturing

Industrial applications and markets of Arc AM

"Norsk Titanium to build world's first industrial-scale aerospace Additive Manufacturing plant in New York"

Oceanic / Offshore Industry

CuAl8 Propeller for Oceanic Applications

Energy Industry

G19 9 L Si Impeller for Energy Applications

Aerospace Industry

[Airbus]

Ti6-4 support for Aerospace Applications

"Norsk Titanium wins award for ist Rapid Plasma Deposition 3D printing technology"

Interview on Industrial Trends for Arc AM

Survey based on analytic pattern concerning the following topics:

- Potentials of Arc AM
- Industrial Requirements for Arc AM Structures
- Software Integration
- Standardization
- Network Integration in context of Industry 4.0

Classification and Structure of the participating Companies

Interviews on Industrial Trends for Arc AM

Preliminary eesults of the study (ongoing interviews)

"Why do powder based AM process have a higher popularity compared to Arc AM processes?" "What are the main potentials of Arc Additive Manufacturing processes?"

Interviews on Industrial Trends for Arc AM

Preliminary Results of the Study (ongoing interviews)

"Please rank the following criterias for Arc AM"

Statements of the interviewed companies:

"...process time is not important due to large parts"

"The most important criteria for Arc AM is the realization of homogeneous mechanical properties."

Interviews on Industrial Trends for Arc AM

Preliminary Results of the Study (ongoing interviews)

"Which requirements need to be conformed in order to apply Arc AM in your company?"

Preliminary conclusions

Topics

- Part volume is a benefit
 - → machinery / process control
- Material properties and homogeneity of the parts
- Distortion
 - → high heat input (compared to laser)

Preliminary conclusions

Way 1: temperature controlled process

Way 2: time controlled process

Cooling or heating?

Material (summarised from literature)

Unalloyed steels
High alloyed steels
Tool steels

. . .

Ni-Alloys

Ti-Alloys

Al-Alloys

Cu-Alloys

...can be processed, but:

- → size effects (wall thickness, part volume)
- → mass distribution effects

[TU Ilmenau]

GMAW processing "tower"
Deposition Rate: 4 kg/h
Material: unalloyed steel (G4Si1)

are not fully described!

Preliminary conclusions

Summary

Process development

i.e. arc / material interaction, arc set up, material properties

Experts final remark: Reliable technologies and machinery for producing big volume parts with known material properties

Process control and monitoring

i.e. temperature, geometry...

CAD/CAM
Simulation and modelling
(simple and low sensitive)

i.e. distortion ...

Outlook

Processing Chain of future industrial Additive Manufacturing

Thanks for your attention

Univ.-Prof. Dr.-Ing. habil. Jean Pierre Bergmann

Production Technology Group
Faculty of Mechanical Engineering
Technische Universität Ilmenau

Tel: +49 3677 692981

Mail: jeanpierre.bergmann@tu-ilmenau.de

Literature

Alm10	Almeida, P.; Williams, S. (2010): Innovative process model of TI-6Al-4V additive layer manufacturing using cold metal transfer (CMT). In: Proceedings of the Twenty-first Annual International Solid Freeform Fabrication Symposium.
Bau11	Baufeld, B., et al. (2011): Manufacturing TI-6Al-4V Components by Shaped Metal Deposition: Microstructures and Mechanical Properties. IOP Conference Series: Materials Science and Engineering, Vol. 26, Conference 1.
Bon11	Bonaccorso, F.; Cantelli, L.; Muscato, G. (2011): Arc welding Control for Shaped Metal Deposition Process. 18 th IFAC World Congress Milano (Italy).
Cla08	Clark, D.; Bache, M.R.; Whittaker, M.T (2008): Shaped metal deposition of a nickel alloy for aero engine applications. In: In Journal of Materials Processing Technology, Volume 203, Issues 1–3, pp. 439-448.
Din15	Ding, D., et al. (2015): A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. In: Robotics and Computer-Integrated Manufacturing, Vol. 34, pp. 8-19.
Din16	Ding, D., et al. (2016): Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. In: Robotics and Computer-Integrated Manufacturing, Vol. 39, pp. 32-42.
Din17	Ding, Y.; Akbari, M.; Kovacevic, R. (2017): Process planning for wire-feed metal additive manufacturing system. In: The International Journal of Advanced Manufacturing Technology, https://doi.org/10.1007/s00170-017-1179-z, last access: 10-09-2017 at 3 p.m.
Son05	Song, Y.; Park, S.; Choi, D.; Jee, H. (2005): 3D welding and milling: Part I—a direct approach for freeform fabrication of metallic prototypes. In: International Journal of Machine Tools, Vol. 45, pp. 1057-1062.

Literature

Spe98	Spencer, J. D.; Dickens, P. M.; Wykes, C. M. (1998): Rapid prototyping of metal parts by three-dimensional welding. Proceedings of the Institution of Mechanical Engineers, Part B. In: Journal of Engineering Manufacture, Vol. 212(3), pp. 175-182.
Wag13	Wagiman, A.; et al. (2013): Effect of GMAW-CMT Heat Input on Weld Bead Profile Geometry for Freeform Fabrication of Aluminium Parts. In: Applied Mechanics and Materials, Vol. 465, pp. 1370-1374.
Wan04	Wang, H.; Jiang, W.; Ouyang, J.; Kovacevic, R. (2004): Rapid prototyping of 4043 Al-alloy parts by VP-GTAW. In: Journal of Materials Processing Technology, Vol. 148, pp. 93-102.
Wan16	Wang, J.F., et al. (2016): Effect of location on microstructures and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. In: Materials Science and Engineering: A, Vol. 676, pp. 395-405.
Xio14	Xiong, J.; Zhang, G. (2014): Adaptive control of deposited height in GMAW-based layer additive manufacturing. In: Journal of Materials Processing Technology, Vol. 214, No. 4, pp. 962-968.
Xio16	Xiong, J.; Ying, Z.; Zhang, W. (2016): Forming appearance control of arc striking and extinguishing area in multi-layer single pass GMAW based additive manufacturing. In: The International Journal of Advanced Manufacturing Technology, pp. 1-8.
Zha03	Zhang, H.; Xu, J.; Wang, G. (2003): Fundamental study on plasma deposition manufacturing. In: Surface and Coatings Technology, Vol. 171, pp. 112–118.

